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Abstract—Acoustic echo cancellation (AEC) is a crucial task in
full duplex communications. As conventional linear filtering ap-
proaches are ineffective to deal with double-talk, various semi-blind
source separation (SBSS)-based AEC algorithms are deceived,
most of which are formulated and implemented in the frequency do-
main based on the multiplicative transfer function (MTF) model for
computational efficiency. To avoid large latency and in order to deal
with loudspeaker nonlinearities, the convolutive transfer function
(CTF) model and odd power series expansion are leveraged, which
are employed by numerous SBSS-based nonlinear AEC (SBSS-
NAEC) algorithms. Conventional SBSS-NAEC methods estimate
the series expansion coefficients and the CTF filter simultaneously
making the number of free parameters to estimate large. Hence, the
corresponding algorithms are computationally expensive and are
difficult to optimize. In this work, we propose to decouple the series
expansion coefficients and the CTF filters into a bilinear form and
present a bilinear alternating optimization framework for estimat-
ing the model parameters. An alternating iterative projection (AIP)
algorithm and an alternating element-wise iterative source steering
(AEISS) algorithm are proposed. As the bilinear representation
consists of less parameters compared to the conventional methods,
the proposed algorithms not only improve the AEC performance
but also reduce the computational complexity, which is validated
by comprehensive simulations and experiments.

Index Terms—Semi-blind source separation, nonlinear acoustic
echo cancellation, odd power series expansion, convolutive transfer
function model, bilinear, alternating optimization.
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I. INTRODUCTION

ACOUSTIC echoes, which are caused by coupling between
the loudspeakers and microphones, are detrimental to full

duplex voice communication [1], [2], [3]. Consequently, acous-
tic echo cancellation (AEC), a process to estimate and eliminate
echoes, has to be used in full duplex voice communication
systems [1], [2], [3], [4], [5], [6]. Generally, AEC models the
acoustic impulse response (AIR) from the loudspeaker to the mi-
crophone as a finite impulse response (FIR) filter. The problem
is then transformed into one of FIR channel identification [3],
[7], [7], [8], [9], [10], [11], [12]. Since AIRs are generally
time-varying, adaptive filters have to be used and many adaptive
algorithms have been developed over the last few decades, such
as the least-mean-square (LMS) [13], [14], [15], [16], normal-
ized LMS (NLMS) [17], [18], [19], [20], recursive least-squares
(RLS) [21], [22], [23], [24], and Kalman filters [25], [26], [27].
Those algorithms can achieve good AEC performance in the
single-talk scenario, where there is no near-end speech; but
their performance often degrades significantly in the presence
of double-talk, where both the far- and near-end speech signals
coexist. The traditional way to deal with this issue is through
using a double-talk detector (DTD) [28], [29] and the adaptation
process stops whenever double-talk is detected. While it has been
proved to be a viable way to handle double-talk, this approach is
unable to track the dynamic acoustic system when the adaptation
is stalled and, as a result, often leads to severe performance
degradation during double-talk. To address this issue, some
Kalman filter-like algorithms were developed, which model both
the near-end and echo signals as uncorrelated complex Gaussian
distributed processes [30], [31]. While improvement is observed,
the performance of these algorithms remains notably inadequate
and fails to meet the demands of practical systems.

Alternatively, the double-talk issue can be addressed from the
perspective of blind source separation (BSS) [32], [33], [34], and
several semi-blind source separation-based AEC (SBSS-AEC)
algorithms have been developed [35], [36], [37], [38], which are
formulated in the frequency domain and can be implemented
efficiently thanks to the fast Fourier transform (FFT). Early such
algorithms adopted the so-called multiplicative transfer function
(MTF) model in which the time-domain convolution is repre-
sented by the frequency-domain bin-wise multiplication [35],
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[38]. To achieve good performance, the analysis window for
short-time Fourier transform (STFT) in this model has to be
long enough to cover the effective part of the AIR (i.e, the
components that significantly contribute to the echo). This,
however, leads to large algorithmic latency, particularly when
the system operates in large rooms or enclosures with high level
of reverberation [39]. To circumvent this issue, the convolutive
transfer function (CTF) model was developed, which repre-
sents the time-domain convolution with a frequency-domain
convolution using signal components from multiple consecutive
frames [40], [41], [42], [43] and is structurally equivalent to
frequency subband filtering [44], [45]. This framework offers
flexibility to choose shorter analysis window, which enables to
reduce the algorithmic latency. The CTF filter estimation can be
formulated as a simplified hybrid exact-approximate diagonal-
ization (HEAD) problem [46] based on the assumption that the
far- and near-end signals are mutually independent, which has
been well studied in the literature of BSS [47], [48], [49], [50],
[51], [52], [53], [54]. Iterative projection (IP) [47] is one of the
most widely-used algorithms to solve this problem for SBSS-
AEC [55], [56]. However, since it involves matrix inversion,
the IP algorithm is computationally very expensive. With the
inspiration of the iterative source steering (ISS) principle [52], a
more computationally efficient algorithm was developed in [57],
which is called the element-wise iterative source steering (EISS).
As shown in [56], [57], both the IP and EISS algorithms can
achieve significant performance improvement in comparison
with the aforementioned Kalman filter for AEC in double-talk
scenarios [30], [31].

Besides double-talk, another challenging issue to deal with in
AEC is the loudspeaker nonlinearity, which makes the linear
mixing model no longer appropriate [3], [5], i.e., the input
of the linear mixing system is a nonlinear transform of the
far-end signal. To deal with this problem, Volterra filters are
often used [58], [59], [60]; but they require large memory and
are computationally expensive and difficult to implement in
most low-cost devices. Another simple yet efficient approach
to model loudspeaker nonlinearities is through adding the so-
called odd power series expansion [61], [62], [63] into the
CTF framework, based on which several SBSS-based nonlinear
AEC (SBSS-NAEC) algorithms have been proposed [57], [64].
These methods merge the CTF filter and the series expansion
coefficients into a long vector, which represents the parameters
to be identified [57], [64]. We will refer to this filter as the merged
near-end signal extraction (MNE) filter in the rest of this work.
The IP and EISS algorithms have been developed for estimating
MNE filters, which have demonstrated promising NAEC per-
formance [57], [64]. However, the computational complexity
of such algorithms is quite high as the length of the MNE
filter is generally large, which is proportional to the product
of the CTF filter length and the number of series expansion
coefficients.

To improve the efficiency and effectiveness of the IP and EISS
algorithms, we propose in this work to represent the nonlinear
echo in a bilinear form as discussed in previous studies [65],
[66], which decouples the CTF filter and the series expansion
coefficients. To the best of our knowledge, this is the first time

TABLE I
NOTATION OF IMPORTANT ACRONYMS

that such a form is explored in the frequency-domain SBSS-
NAEC, though a similar model was investigated for time-domain
adaptive filtering [67]. We then present a bilinear alternating
optimization framework for estimating the model parameters.
Based on this framework and also following the principles
in [56], [57], [64], we derive an alternating iterative projection
(AIP) algorithm and an alternating element-wise iterative source
steering (AEISS) algorithm. Since the number of free parameters
to estimate is less than those in the conventional IP and EISS
methods, the derived two algorithms cannot only improve the
AEC performance but also reduce the computational complexity.

The contributions of this work are as follows. Initially, we
utilize a bilinear form to decouple the CTF filter and the nonlin-
ear expansion coefficients, reformulating their estimation as two
separate SBSS problems. Given the interdependence between
the CTF filter and the nonlinear coefficients, we introduce
a bilinear alternating optimization approach. This framework
serves as the foundation for developing two efficient algorithms:
AIP and AEISS. Simulations and experiments are carried out to
validate the superior performance of AIP and AEISS. Important
acronyms are detailed in Table I for future reference.

II. SIGNAL MODEL

Consider a full-duplex communication scenario. The far-end
signal is played back through a loudspeaker with some unknown
nonlinearity. The loudspeaker signal is then convolved with the
AIR as it travels from the loudspeaker to the near-end micro-
phone, forming the so-called echo. Finally, the echo signal, along
with the near-end signal, is captured by the near-end microphone
and transmitted back to the far end. Mathematically, this process
can be expressed at time t as

y(t) = s(t) + v(t)

= s(t) + a(t) � f [x(t)] , (1)

where y(t) is the observed microphone signal, s(t) is the near-
end signal, v(t) = a(t) � f [x(t)] is the nonlinear acoustic echo,
a(t) stands for the AIR, � denotes the linear convolution, and
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f [·] represents the loudspeaker responses, including both linear
and nonlinear effects.

A. Odd Power Series Expansion

Instead of directly estimating the nonlinear system, a tech-
nique involving several linear systems is employed to approxi-
mate the nonlinearity. Subsequently, the problem is transformed
into one of linear system identification, as discussed in previous
studies [62], [63]. The Maclaurin series expansion emerges as
a potent mathematical tool for approximating nonlinear func-
tions. Given that memoryless nonlinearities prevalent in AEC
applications are typically odd symmetric, the Maclaurin series
expansion simplifies into the odd power series expansion. This
approach has proven effective in modeling memoryless loud-
speaker nonlinearities, as demonstrated in prior research [64],
[67]. According to [56], [57], [61], [62], [63], [64], a typical
memoryless nonlinearity can be expanded as

f [x(t)] =
N∑

n=1

bn x
2n−1(t), (2)

whereN is the expansion order and bn is thenth order odd power
series expansion coefficient. It is noteworthy that Maclaurin
series expansion can also handle nonsymmetric nonlinearities
by doubling parameters. In such scenarios, the enhanced efficacy
of the proposed algorithms becomes even more pronounced.

B. Convolutive Transfer Function Model

To accelerate SBSS-NAEC algorithms, the MTF model repre-
senting time-domain convolution with a frequency-domain mul-
tiplication is often adopted. However, the MTF model requires
an STFT analysis window to be at least as long as the effective
part of the linear echo path, which will inevitably introduce
significant algorithmic delay, especially in highly reverberant
environments [39]. In order to address this limitation, CTF
models which represent the time-domain convolution with a
frequency-domain convolution is adopted [40], [41], [42]. CTF
models are not restricted by the length of STFT window and,
therefore, can achieve a compromise between the computational
complexity and algorithmic delay [40]. With this model [41], the
microphone signal can be expressed as [57], [64]

Yi,j = Si,j +
L∑

l=1

N∑
n=1

bn Ai,j,lXn,i,j−l+1︸ ︷︷ ︸
Vi,j

, (3)

where i ∈ {1, . . . , I} and j ∈ {1, . . . , J} are the frequency and
time-frame indices, respectively, L is the length of the CTF
subband filter, Yi,j , Si,j , Vi,j , and Xn,i,j are the STFT-domain
representations of y(t), s(t), v(t), and x2n−1(t), respectively,
and Ai,j,l is a CTF filter coefficient representing the linear echo
path in the CTF domain. Generally, for a given reverberation
level, if shorter algorithmic delay is desired, a shorter STFT
window has to be used. Consequently, a larger CTF filter length
L has to be chosen [40], [42], which however inevitably leads
to increase of the computational complexity.

Fig. 1. Illustration of NAEC in full duplex communications.

Fig. 2. Illustration of the nonlinear echo model: (a) merged nonlinear echo
model and (b) bilinear nonlinear echo model.

C. Merged Nonlinear Echo Model

In the conventional SBSS-NAEC model [57], [64], the nonlin-
ear coefficients are merged into the linear echo path as illustrated
in Fig. 2(a). Mathematically, this process can be expressed as

Vi,j =

L∑
l=1

N∑
n=1

bn Ai,j,lXn,i,j−l+1
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=

L∑
l=1

N∑
n=1

Am
n,i,j,lXn,i,j−l+1

=

L∑
l=1

(
ami,j,l

)T
xi,j−l+1

=
(
ãmi,j
)T

x̃i,j , (4)

where Am
n,i,j,l = bnAi,j,l, the superscripts m and T denote,

respectively, the merged model and transpose operator, and

ami,j,l =
[
Am

1,i,j,l Am
2,i,j,l . . . Am

N,i,j,l

]T
, (5)

ãmi,j =
[(
ami,j,1

)T (
ami,j,2

)T
. . .

(
ami,j,L

)T ]T
, (6)

xi,j−l = [X1,i,j−l X2,i,j−l . . . XN,i,j−l]
T , (7)

x̃i,j =
[
xT
i,j xT

i,j−1 . . . xT
i,j−L+1

]T
. (8)

As seen, in the merged model, the nonlinear echo is represented
with N × I × L parameters.

D. Bilinear Nonlinear Echo Model

Alternatively, as can be seen from (3), the nonlinear echo
can be reformulated as a bilinear form of the odd power series
expansion coefficients vector b and the CTF filter vector ai,j :

Vi,j = aTi,j Xi,j b,

= aTi,jx
a
i,j , (9)

or, equivalently,

Vi,j = bT XT
i,j ai,j

= bTxb
i,j , (10)

where

ai,j = [Ai,j,1 Ai,j,2 . . . Ai,j,L]
T , (11)

b = [b1 b2 . . . bN ]T , (12)

and

Xi,j =

⎡
⎢⎢⎢⎣

X1,i,j X2,i,j · · · XN,i,j

X1,i,j−1 X2,i,j−1 · · · XN,i,j−1

...
...

. . .
...

X1,i,j−L+1 X2,i,j−L+1 · · · XN,i,j−L+1

⎤
⎥⎥⎥⎦ .

(13)

The two transformed signal vectors xa
i,j and xb

i,j are of the
following form:

xa
i,j = Xi,jb, (14)

xb
i,j = XT

i,jai,j . (15)

By decoupling the series expansion parametersb and the CTF
filter coefficients ai,j from each other by the bilinear nonlinear
echo model, the number of free parameters for every time frame
is reduced to N + I × L. This bilinear nonlinear echo model is
illustrated in Fig. 2(b).

E. Probabilistic Signal Model

In the rest of this paper, we model the near-end signal with a
generalized Gaussian distribution, which has been widely used
in the literature [47], [48], [56], [57], [64]:

p (sj) ∝ exp

[
−
(‖sj‖2

γ

)β
]
, (16)

where

sj =
[
S1,j S2,j . . . SI,j

]T
(17)

and || · ||2 denotes the �2 norm. We assume that γ > 0 and 0 <
β ≤ 2 to obtain supergaussian distributions in order to use the
well-known majorize-minimization (MM) method [68].

III. CONVENTIONAL ALGORITHMS

In this section, we give a brief overview of the conventional IP
and EISS algorithms, which are based on the merged nonlinear
echo model. To formulate the NAEC problem as one of SBSS,
the following mixing model is considered

ỹm
i,j = Hm

i,j s̃
m
i,j , (18)

where

ỹm
i,j =

[
Yi,j x̃T

i,j

]T
, (19)

s̃mi,j =
[
Si,j x̃T

i,j

]T
(20)

are two signal vectors, and

Hm
i,j =

[
1

(
ãmi,j
)T

0NL×1 INL

]
(21)

is the mixing matrix, with 0NL×1 being an all-zero column
vector of length NL and INL being the identity matrix of size
NL×NL. Now the problem can be solved from a signal sep-
aration perspective. The near-end signal can then be recovered
through the following inverse system:

Wm
i,j =

[
1 −

(
ˆ̃ami,j

)T
0NL×1 INL

]
, (22)

where ˆ̃ami,j is the estimate of ãmi,j . The MNE filter defined as

wm
i,j =

[
1 −

(
ˆ̃ami,j

)T]H
, (23)

where (·)H denotes conjugate transpose, is used to extract the
near-end signal, i.e.,

Ŝi,j =
(
wm

i,j

)H
ỹm
i,j . (24)

It is important to emphasize that this signal separation issue
qualifies as an SBSS problem as the far-end signal is precisely
known. Now exploiting the mutual independence between the
near-end and far-end signals, one can derive the following re-
cursive negative log-likelihood function [57]:

Lm
i,j = − 1∑j

j′=1(η
m)j−j′

j∑
j′=1

(ηm)j−j′ log p (sj′)
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− 2

I∑
i=1

log
∣∣detWm

i,j

∣∣ , (25)

where ηm ∈ (0, 1) is a forgetting factor. With the MM
method [47], [48], the following auxiliary function can be con-
structed

Lm,+
i,j =

I∑
i=1

(
wm

i,j

)H
Gm

i,jw
m
i,j − 2

I∑
i=1

log
∣∣detWm

i,j

∣∣ , (26)

where

Gm
i,j = ηmGm

i,j−1 + (1− ηm)ϕ
(
σm
s,j

)
ỹm
i,j(ỹ

m
i,j)

H (27)

is the auxiliary matrix and

ϕ
(
σm
s,j

)
= (σm

s,j)
β−2, (28)

σm
s,j =

√√√√ I∑
i=1

∣∣(wm
i,j−1)

H ỹm
i,j

∣∣2, (29)

is a weighting function. It can be shown that [47], [48]

Lm,+
i,j ≥ Lm

i,j , (30)

with equality if and only if wi,j = wi,j−1. The derivation of
the auxiliary function is presented in Appendix A. Due to the
structure of Wm

i,j given in (22), (26) is a simplified HEAD
problem [46], which has been well studied in the literature of
BSS [47], [51], [52]. Accordingly, the MNE filter (23) can be
optimized adaptively by constructing and minimizing (26). Then
the near-end signal is extracted according to (24).

A. Iterative Projection

By equating the Wirtinger derivative of (26) with respect
to (wm

i,j)
∗ to 0, where (·)∗ denotes complex conjugation, one

obtains

Gm
i,jw

m
i,j =

(
Wm

i,j

)−1
eNL+1, (31)

where eNL+1 is a unitary vector of length NL+ 1, with the
first element being 1. Then the IP-based update rule is obtained
as [47], [48]

wm
i,j =

(
Wm

i,jG
m
i,j

)−1
eNL+1. (32)

Taking the structure of Wm
i,j into account, the update rule can

be simplified as [56], [64]

wm
i,j =

(
Gm

i,j

)−1
eNL+1. (33)

Now, we ensure the structure of the MNE filter (23), to be
specific, the first element should be 1, by

wm
i,j :=

wm
i,j

Wm
i,j,1

, (34)

where Wm
i,j,1 is the first element of wm

i,j and := denotes assign-
ment.

One may notice that the IP algorithm updates the MNE filter
in a two-step manner, i.e., update and normalization, which
does not fully take advantage of the structure of the unit upper
triangular structure of the demixing matrix (22).

B. Element-Wise Iterative Source Steering

A more efficient update strategy is given by the EISS al-
gorithm [57], which is modified from the rank-1 update rule
proposed in [51]. For EISS, the MNE filter is updated element-
wisely as

Wm
i,j,k =

{
Wm

i,j−1,k − Um
i,j,k, k = 1(

1− Um
i,j,1

)
Wm

i,j−1,k − Um
i,j,k, else

, (35)

where Wm
i,j,k is the k-th element of the MNE filter wm

i,j and
Um
i,j,k is a steering stepsize yet to be determined. Substituting

(35) into (26) gives the following auxiliary function:

Lm,+
i,j = − 2 log

∣∣1− (Um
i,j,1

)∗∣∣
+
(
wm

i,j − ũm
i,j

)H
Gm

j

(
wm

i,j − ũm
i,j

)
, (36)

where

ũm
i,j =

[
Um
i,j,1 Um

i,j,1W
m
i,j−1,2 + Um

i,j,2 . . .

Um
i,j,1W

m
i,j−1,NL+1 + Um

i,j,NL+1

]T
(37)

is a vector containing the parameters to be estimated. Then,
forcing the derivative with respect to (Um

i,j,k)
∗ to 0 gives

Um
i,j,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1−

[(
wm

i,j

)H
Gm

i,jw
m
i,j

]− 1
2

, k = 1(
gm
i,j,k

)H
wm

i,j

Gm
i,j,k,k

, else

, (38)

where gm
i,j,k is the kth column of matrix Gm

i,j and Gm
i,j,k,k is

the kth diagonal element of Gm
i,j . After updating the MNE filter

with (38) and (35), the normalization given in (34) is performed.
Again, the EISS algorithm updates the MNE filter coefficients

in the two-step manner, which does not take the unit upper
triangular structure of the demixing matrix (22) into full con-
sideration.

IV. PROPOSED METHODS

As can be seen, the MNE filter length is NL+ 1. Con-
sequently, the computational complexity for identifying the
merged nonlinear echo model is high. To address this issue,
we propose two improved algorithms based on the previously
discussed bilinear nonlinear echo model, which take advantage
of the structure of the demixing system to update the filter coef-
ficients with a one-step strategy. Note that the two-step update
strategy in the IP and EISS algorithms can also be adopted to the
presented methods; but the dimension of the related matrices is
higher, which makes the update process computationally more
expensive.

Firstly, if the series expansion coefficients bj are fixed, we
can formulate the identification of the CTF filter ai,j as

ỹa
i,j = Ha

i,j s̃
a
i,j , (39)

where

ỹa
i,j =

[
Yi,j (xa

i,j)
T
]T

, (40)

s̃ai,j =
[
Si,j (xa

i,j)
T
]T

(41)
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are two signal vectors, and

Ha
i,j =

[
1 aTi,j

0L×1 IL

]
(42)

is the mixing matrix. The near-end signal is extracted by apply-
ing the demixing matrix:

Wa
i,j =

[
1 −âTi,j

0L×1 IL

]
, (43)

where âTi,j is the estimate of aTi,j . With the filter

wa
i,j =

[
1 − âTi,j

]H
, (44)

the near-end signal can be extracted

Ŝi,j =
(
wa

i,j

)H
ỹa
i,j . (45)

To estimate ai,j , the following cost function is considered

La
i,j = − 1∑j

j′=1(η
a)j−j′

j∑
j′=1

(ηa)j−j′ log p (sj′)

− 2
I∑

i=1

log
∣∣detWa

i,j

∣∣ , (46)

where ηa ∈ (0, 1) is a forgetting factor. As the first element of
wa

i,j is fixed to 1, we obtain due to the one-step strategy:

detWa
i,j = 1. (47)

Additionally, with the majorize-minimization (MM) method, the
following auxiliary function can be constructed

La,+
i,j =

I∑
i=1

(
wa

i,j

)H
Ga

i,jw
a
i,j , (48)

where the auxiliary matrix Ga
i,j can be partitioned as

Ga
i,j =

[(
σa
y,i,j

)2
(qa

i,j)
H

qa
i,j Ra

i,j

]
, (49)

where(
σa
y,i,j

)2
= ηa

(
σa
y,i,j−1

)2
+ (1− ηa)ϕ

(
σa
s,j

) |Yi,j |2, (50)

qa
i,j = ηaqa

i,j−1 + (1− ηa)ϕ
(
σa
s,j

)
Y ∗
i,jx

a
i,j , (51)

Ra
i,j = ηaRa

i,j−1 + (1− ηa)ϕ
(
σa
s,j

)
xa
i,j(x

a
i,j)

H , (52)

with

ϕ
(
σa
s,j

)
= (σa

s,j)
β−2, (53)

and

σa
s,j =

√√√√ I∑
i=1

∣∣(wa
i,j−1)

H ỹa
i,j

∣∣2. (54)

Analogously to (30), one can verify that

La,+
i,j ≥ La

i,j . (55)

Now, âi,j can be optimized by solving

âi,j = argmin La,+
i,j , s.t.

(
wa

i,j

)H
eL+1 = 1. (56)

After âi,j are updated, one can construct xb
i,j according to

(15). The series expansion coefficients can then be identified as

ỹb
i,j = Hbs̃bi,j , (57)

where

ỹb
i,j =

[
Yi,j

(
xb
i,j

)T ]T , (58)

s̃bi,j =
[
Si,j

(
xb
i,j

)T ]T , (59)

Hb =

[
1 bT

0N×1 IN

]
. (60)

The estimated demixing matrix is

Wb
j =

[
1 −b̂T

j

0N×1 IN

]
, (61)

where b̂j is the estimate of b at time-frame j. Using the follow-
ing filter:

wb
j =

[
1 − b̂T

j

]H
, (62)

one can extract the near-end signal as

Ŝi,j =
(
wb

j

)H
ỹb
i,j . (63)

Now, the recursive negative log-likelihood function for b̂j is
written as

Lb
j = − 1∑j

j′=1 (η
b)

j−j′

j∑
j′=1

(ηb)j−j′ log p (sj′)

− 2I log
∣∣detWb

j

∣∣ , (64)

where ηb ∈ (0, 1) is a forgetting factor for estimating the series
expansion coefficients. Analogously, with the one-step strategy,
we have

detWb
j = 1. (65)

Therefore, with the MM method, the following auxiliary func-
tion is constructed

Lb,+
j =

(
wb

j

)H
Ḡb

jw
b
j . (66)

The auxiliary matrix Ḡb
j can again be partitioned as

Ḡb
j =

[(
σ̄b
y,j

)2
(q̄b

j )
H

q̄b
j R̄b

j

]
, (67)

where

(
σ̄b
y,j

)2
= ηb

(
σ̄b
y,j−1

)2
+

(
1− ηb

)
ϕ
(
σb
s,j

)
I

I∑
i=1

|Yi,j |2,

(68)

q̄b
j = ηbq̄b

j−1 +

(
1− ηb

)
ϕ
(
σb
s,j

)
I

I∑
i=1

Y ∗
i,jx

b
i,j , (69)
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R̄b
j = ηbR̄b

j−1 +

(
1− ηb

)
ϕ
(
σb
s,j

)
I

I∑
i=1

xb
i,j

(
xb
i,j

)H
,

(70)

with

ϕ
(
σb
s,j

)
=
(
σb
s,j

)β−2
, (71)

and

σb
s,j =

√√√√ I∑
i=1

∣∣∣(wb
j−1

)H
ỹb
i,j

∣∣∣2. (72)

Then the nonlinear coefficients can be estimated by solving

b̂j = argmin Lb,+
j , s.t.

(
wb

j

)H
eN+1 = 1. (73)

Now, the entire system can be identified by iteratively and
alternatingly updating ŵa

i,j and ŵb
j . Finally, the near-end signal

can be extracted by applying (63).

A. Alternating Iterative Projection

We now adopt the IP algorithm for our bilinear alternating
optimization scheme by directly solving (56) and (73). Note
that as det(Wa

i,j) = det(Wb
j ) = 1, the HEAD problem de-

generates into one of linear constrained quadratic program-
ming (LCQP) [69], [70], [71], which has been widely studied in
minimum variance distortionless response (MVDR) filter [69],
[72], [73] and linearly constrained minimum variance (LCMV)
filter [69], [74], [75], [76] optimization.

Firstly, we use the estimate b̂j from the previous frame to
construct xa

i,j and update the associated statistics. The solution
of (56) is given as [72]

wa
i,j =

(
Ga

i,j

)−1
eL+1

eTL+1

(
Ga

i,j

)−1
eL+1

. (74)

Assuming that bothGa
i,j andRa

i,j are invertible, one can express
the inverse of Ga

i,j as

(
Ga

i,j

)−1
=

[ (
Sa
i,j

)−1 − (Sa
i,j

)−1 (
cai,j
)H

− (Sa
i,j

)−1
cai,j

(
Ra

i,j

)−1
+
(
Sa
i,j

)−1
Da

i,j

]
,

(75)

where

Sa
i,j =

(
σa
y,i,j

)2 − (qa
i,j

)H (
Ra

i,j

)−1
qa
i,j (76)

is the Schur complement of Ra
i,j in Ga

i,j[77], [78], [79] and

cai,j =
(
Ra

i,j

)−1
qa
i,j , (77)

Da
i,j = cai,j

(
cai,j
)H

. (78)

Substituting (75) into (74), we have

(
Sa
i,j

)−1
[

1
−a∗i,j

]
=

[ (
Sa
i,j

)−1

− (Sa
i,j

)−1
cai,j

]
. (79)

Therefore, the CTF filter can be updated as

âi,j =
[(
Ra

i,j

)−1
qa
i,j

]∗
. (80)

Algorithm 1: Alternating iterative projection algorithm.

1: Setting forgetting factors ηa and ηb

Initial parameters
Xi,0 = 0L×N , âi,0 = 0L×1, b̂0 = [1 0T

(N−1)×1]
T ,

qa
i,0 = 0L×1, q̄b

0 = 0N×1,
Ra

i,0 = 10−4IL, R̄b
0 = 10−4IN

2: for j = 1; j < J ; j = j + 1 do
3: Insert Xn,i,j into Xi,j−1 to get Xi,j

4: Update CTF filter associated statistics with (14), (40),
(51), (52), (53), (54)
xa
i,j = Xi,jb̂j−1,

ỹa
i,j = [ Yi,j (xa

i,j)
T ]T

σa
s,j =

√∑I
i=1 |(wa

i,j−1)
H ỹa

i,j |2
ϕ(σa

s,j) = (σa
s,j)

β−2

qa
i,j = ηaqa

i,j−1 + (1− ηa)ϕ(σa
s,j)Y

∗
i,jx

a
i,j

Ra
i,j = ηaRa

i,j−1 + (1− ηa)ϕ(σa
s,j)x

a
i,j(x

a
i,j)

H

5: Update CTF filter with (80)
âi,j = [(Ra

i,j)
−1qa

i,j ]
∗

6: Update series expansion coefficients associated
statistics with (15), (58), (69), (70), (71), (72)
xb
i,j = XT

i,j âi,j
ỹb
i,j = [Yi,j (xb

i,j)
T ]T

σb
s,j =

√∑I
i=1 |(wb

i,j−1)
H ỹb

i,j |2
ϕ(σb

s,j) = (σb
s,j)

β−2

q̄b
j = ηbq̄b

j−1 +
(1−ηb)ϕ(σb

s,j)

I

∑I
i=1 Y

∗
i,jx

b
i,j

R̄b
j = ηbR̄b

j−1 +
(1−ηb)ϕ(σb

s,j)

I

∑I
i=1 x

b
i,j(x

b
i,j)

H

7: Update series expansion coefficients with (87)
b̂j = [(R̄b

j )
−1q̄b

j ]
∗

8: Extract near-end signal
Ŝi,j = (wb

j )
H ỹb

i,j

9: end for

After updating the CTF filter âi,j , we use it to construct xb
i,j .

The solution of (73) is given by

wb
j =

(
Ḡb

j

)−1
eN+1

eTN+1

(
Ḡb

j

)−1
eN+1

. (81)

Following the previous analysis, one can express the inverse of
Ḡb

j as

(
Ḡb

j

)−1
=

[ (
S̄b
j

)−1 − (S̄b
j

)−1 (
c̄bj
)H

− (S̄b
j

)−1
c̄bj

(
R̄b

j

)−1
+
(
S̄b
j

)−1
D̄b

j

]
, (82)

where

S̄b
j =

(
σ̄b
y,j

)2 − (q̄b
j

)H (
R̄b

j

)−1
q̄b
j (83)

is the Schur complement of R̄b
j in Ḡb

j and

c̄bj =
(
R̄b

j

)−1
q̄b
j , (84)

D̄b
j = c̄bj

(
c̄bj
)H

. (85)
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Algorithm 2: Alternating element-wise iterative source
steering algorithm.

1: Setting forgetting factors ηa and ηb

Initial parameters
Xi,0 = 0L×N , âi,0 = 0L×1, b̂0 = [1 0T

(N−1)×1]
T ,

qa
i,0 = 0L×1, q̄b

0 = 0N×1,
Ra

i,0 = 10−4IL, R̄b
0 = 10−4IN

2: for j = 1; j < J ; j = j + 1 do
3: Insert Xn,i,j into Xi,j−1 to get Xi,j

4: Update CTF filter associated statistics with (14), (40),
(51), (52), (53), (54)

5: for l = 1; l < L; l = l + 1 do
6: Calculate the steering stepsize for the l-th element in

the CTF filter with (92)

Ua
i,j,l =

(qai,j,l)
∗ − âTj−1r

a
i,j,l

Ra
i,j,l,l

7: Update the l-th element in the CTF filter with (88)
Âi,j,l = Âi,j−1,l + Ua

i,j,l

8: end for
9: Update series expansion coefficients associated

statistics with (15), (58), (69), (70), (71), (72)
10: for n = 1; n < N ; n = n+ 1 do
11: Calculate the steering stepsize for the n-th series

expansion coefficient with (97)

ub
j,n =

(q̄bj,n)
∗ − b̂T

j−1r̄
b
j,n

r̄bj,n,n
,

12: Update the n-th series expansion coefficient with
(93)
b̂j,n = b̂j−1,n + ub

j,n

13: end for
14: Extract near-end signal with (63)

Ŝi,j = (wb
j )

H ỹb
i,j

15: end for

Substituting (82) into (81) gives

(
S̄b
j

)−1
[

1
−b∗

j

]
=

[ (
S̄b
j

)−1

− (S̄b
j

)−1
c̄bj

]
. (86)

Therefore, the CTF filter can be updated as

b̂j =
[(
R̄b

j

)−1
q̄b
j

]∗
. (87)

We summarize the AIP algorithm in Algorithm 1. Based on (80)
and (87), RLS-like algorithms can be derived, which, however,
will be left to the reader’s investigation.

B. Alternating Element-Wise Iterative Source Steering

In the following, we extend a previously proposed EISS [57]
algorithm for the use in our bilinear alternating optimization. We
first construct xa

i,j with b̂j−1 and update âi,j . As we fix the first
element in wa

i,j to 1, the original EISS can be further simplified
by skipping calculating the first steering stepsize. Therefore, one
can directly update every element in the CTF filter. The update
rule is given by

Âi,j,l = Âi,j−1,l + Ua
i,j,l, l = 1, 2, . . . , L, (88)

where Âi,j,l is the estimate of Ai,j,l and Ua
i,j,l is a steering

stepsize yet to be determined. Substituting (88) into (48) gives

La,+ =
[
wa

i,j − ũa
i,j

]H
Ga

i,j

[
wa

i,j − ũa
i,j

]
, (89)

where

ũa
i,j =

[
0
(
Ua
i,j,1

)∗
. . .

(
Ua
i,j,L

)∗]T
. (90)

Forcing the derivative of (89) with respect to (Ua
i,j,l)

∗ to be 0,
one can determine the steering stepsize as

Ua
i,j,l =

(
wa

i,j−1

)H
ga
i,j,l+1

Ga
i,j,l+1,l+1

, (91)

where ga
i,j,l+1 denotes the (l + 1)th column of Ga

i,j and
gai,j,l+1,l+1 is the (l + 1)th diagonal element of Ga

i,j . Following
the structure of (44) and (49), we have

Ua
i,j,l =

(
qai,j,l

)∗
− âTj−1r

a
i,j,l

Ra
i,j,l,l

, (92)

where rai,j,l denotes the lth column of Ra
i,j , qai,j,l is the lth

element of qa
i,j and Ra

i,j,l,l is the l-th diagonal element of Ra
i,j .

In comparison with (92), (91) needs to update Ra
i,j rather than

Ga
i,j , which helps reduce the computation cost. Then the CTF

filter âi,j is updated with (88).
Note that the coefficients bn are independent of frequency.

Therefore, we use lower case to denote the associated scalars.
Now, we construct xb

i,j with the estimated âi,j and update b̂j .
Similarly, the nonlinear coefficients are updated as

b̂j,n = b̂j−1,n + ub
j,n, n = 1, 2, . . . , N, (93)

where b̂j,n is the estimate of bn in time frame j and ub
j,n is a

steering stepsize to be determined. Substituting (93) into (66)
gives the following expression:

Lb,+ =
(
wb

j − ũb
j

)H
Ḡb

j

(
wb

j − ũb
j

)
, (94)

where

ũb
j =

[
0
(
ub
j,1

)∗
. . .

(
ub
j,N

)∗]T
. (95)

By optimizing (94) with respect to (ub
j,n)

∗, the steering stepsize
is determined as

ub
j,n =

(
wb

j−1

)H
ḡb
j,n+1

ḡbj,n+1,n+1

, (96)

where ḡb
j,n+1 is the (n+ 1)th column of Ḡb

j and ḡbj,n+1,n+1

is the (n+ 1)th diagonal element of Ḡb
j . By considering the

structure of (44) and (49), we have

ub
j,n =

(
q̄bj,n
)∗ − b̂T

j−1r̄
b
j,n

r̄bj,n,n
, (97)

where r̄bj,n, q̄bj,n and r̄bj,n,n are thenth column of R̄b
j ,nth element

of q̄b
j and n-th diagonal element of R̄b

j , respectively. Then, the

nonlinear coefficients b̂j are updated using (93). The AEISS
algorithm is summarized in Algorithm 2.
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TABLE II
MAIN EQUATIONS AND DOMINANT COMPUTATIONAL COMPLEXITY FOR EACH STEP OF ALL SBSS-NAEC ALGORITHMS

V. COMPLEXITY ANALYSIS

We now analyze the computational complexity of the
proposed AIP and AEISS algorithms and compare them with
the conventional IP and EISS algorithms. All algorithms consist
of the following three fundamental steps: 1) updating the
associated statistics, 2) updating the corresponding filters,
and 3) extracting the near-end signal. The computational
complexity depends on the nonlinear echo model, the filter
length, and the chosen optimization method. The dominant
complexity and the associated equation for each step to process
a single time-frequency component is presented in Table II. For
IP-based methods, the dominant computational cost comes from
the inversion of the auxiliary covariance matrix. Therefore, the
complexity of the original IP algorithm is O[(NL+ 1)3]. With
the bilinear nonlinear echo model and one-step strategy, AIP
successfully reduces it to max[O(N3),O(L3)]. As for EISS-
based methods, the computational cost is dominated by updating
the associated statistics and by the calculation of the steering
stepsizes. The complexity of the original EISS algorithm is
O[(NL+ 1)2]while AEISS reduces it tomax[O(N2),O(L2)].
It is clear, that the computational complexity of EISS-based
methods is one order lower than the IP-based counterpart.
Obviously, for large P and L, the AIP and AEISS algorithms
are much more computationally efficient than the conventional
counterparts, indicating that they are much more suitable for
real-time communications (RTC) in low-resource hardware.

VI. SIMULATIONS AND RESULTS

For consistency, we use the same speech signals as in the pa-
per [64]. The sampling rate of all signals is 16 kHz. We randomly
picked two AIRs from RWCP_E2A [81], which correspond to
a reverberation time of approximately 300 ms. To model loud-
speaker distortions, we consider the hard-clipping [82] function,
which is of the following form:

f [x(t)] =

⎧⎪⎨
⎪⎩
−ρ, x(t) < −ρ

x(t), |x(t)| ≤ ρ

ρ, x(t) > ρ

, (98)

where ρ > 0 is the maximum output amplitude of the loud-
speaker. In our simulation, we set the value of ρ consistent to that
in the paper [64], i.e., ρ = 0.2xmax, where xmax = max(|x(t)|)
is the maximum amplitude of the original signal. To model the
nonlinearity, we set the order of odd power series expansion to
N = 5. A von Hann window is used and the window length is
1024 samples. The overlap between consecutive frames is 75%.
Since the STFT window is much shorter than the AIR, we set the
CTF filter length to L = 5. All experiments are conducted on a
laptop with i7-12700H CPU. For the IP and EISS methods, we
set the forgetting factors to ηm = 0.992. To make the algorithms
robust, the auxiliary matrix G̃m

i,0 is set to 10−3 × INL+1. For
the AIP and AEISS methods, we set ηa = ηb = 0.98. The
auxiliary matrices Ga

i,0 and Ḡb
0 are set to be 10−4 × IL and

10−4 × IN , respectively, and the two auxiliary vectors qa
i,0 and

qb
0 are set to be 0L×1 and 0N×1, respectively. The CTF filter

and nonlinear coefficients are initialized as âi,0 = 0L×1 and
b̂0 = [1 0T

(N−1)×1]
T . The shape parameter β is set to β = 0.4

to be consistent with [64]. Note that with this configuration, AIP
and AEISS algorithms have similar steady-state performance as
their conventional counterparts as illustrated in Section VI-A.
To evaluate their performance, we use the echo return loss
enhancement (ERLE) [30], [83] for the single-talk case and the
true echo return loss enhancement (tERLE) [30], [38] for the
double-talk case. The implementation of these two measures
involves smoothing, utilizing samples within 0.2 s vicinity.
Besides, an experiment with real recordings is carried out where
the Perceptual Evaluation of Speech Quality (PESQ) [84] and
the Short-Time Objective Intelligibility (STOI) [85] metrics are
used to measure the quality of the obtained near-end signals.

We compare the proposed algorithms with both the orig-
inal SBSS-NAEC algorithms and a single-channel variant
of [31], namely, a state-of-the-art state-space model-based
NAEC (SSM-NAEC) algorithm.

A. Tracking Ability

A 20-second-long AR(1) signal with xmax=1, generated by
filtering a white Gaussian noise with the system 1/(1− 0.8z−1),
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Fig. 3. Tracking ability of all the compared SBSS-NAEC algorithms. The
far-end signal is an AR(1) signal. The AIR changes at the 10 s. (a) ERLE over
time in the single-talk case and (b) tERLE over time in double-talk.

is utilized as the far-end signal. Subsequently, it undergoes the
hard clipping function to produce the nonlinear loudspeaker
signal. For the first 10 seconds, the nonlinearly distorted signal is
convolved with the first AIR and it is then convolved with the sec-
ond AIR. In other words, the AIR changes at t=10 s. We consider
both single-talk and double-talk situations. For the double-talk
case, the female speech signal from [64] is used as near-end
signal and the corresponding signal-to-echo ratio (SER) is set to
0 dB. A white Gaussian noise is added as background noise cor-
responding with a signal-to-noise ratio (SNR) of 60 dB. Please
note that we refrain from comparing the tracking capabilities
with SSM-NAEC, as it cannot attain AEC performance compa-
rable to SBSS-NAEC algorithms during double-talk scenarios.
This will be substantiated in Section (VI-C) and Section (VI-D).
As seen in Fig. 3, AIP and AEISS algorithms achieved similar
steady-state performance with their conventional counterparts
in the first 10 seconds. For the second 10 seconds, the proposed
AIP and AEISS have significantly better tracking ability since
they have less number of free parameters to estimate.

B. Performance in Single-Talk Case

Now, we compare the performance of all SBSS-NAEC algo-
rithms during single talk using the data from [64]. A 10-second
long male speech signal is used as the far-end signal. This
signal is passed through the hard clipping function and is then
convolved with the first AIR to generate the nonlinear echo.
White Gaussian noise is added as background noise with an SNR
of 60 dB. The ERLE performance achieved by all compared

Fig. 4. ERLE performance achieved by all compared algorithms in a single-
talk situation.

Fig. 5. tERLE performance achieved by all compared algorithms in a double-
talk situation.

algorithms are plotted in Fig. 4. As observed, SSM-NAEC
demonstrates performance akin to that of IP and EISS. Further-
more, in the single-talk scenario, the AIP and AEISS algorithms
exhibit markedly superior performance.

C. Performance in Double-Talk Case

We now compare the performance of all compared algorithms
in the double-talk case, again, using the data from [64]. The
nonlinear echo is generated following the similar process as in
Section VI-B. A female speech signal of 10-second long is used
as the near-end signal with an SER of 0 dB. White Gaussian noise
is added as background noise with an SNR of 60 dB. In Fig. 5, we
plot the tERLE performance of all compared algorithms. Clearly,
the SSM-NAEC algorithm falls short of achieving comparable
AEC performance when compared to SBSS-NAEC algorithms
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Fig. 6. Spectrograms of the recorded echo and error signals generated by all compared algorithms.

in double-talk scenarios. Additionally, the AIP and AEISS algo-
rithms outperform IP and EISS, underscoring their superiority
in addressing double-talk situations in AEC applications.

D. Experiment With Real Recordings

Now, we compare the AEC performance with real recorded
echoes. The aforementioned 10-second speech signal from a
male speaker is played by a low-cost loudspeaker and picked
up by a mobile phone in an office environment, sampled at
16 kHz. Subsequently, a 10-second speech signal from a female
speaker is introduced as the near-end signal at an SER of 0 dB.
It is important to note that we refrain from adding additional
background noise, as the office noise is already captured in the
recordings. We define the error signal as

e(t) = s(t)− ŝ(t). (99)

The spectrograms of the error signals generated by all com-
pared algorithms are shown in Fig. 6. To enhance clarity, the
lower bound in the figure is set to 55 dB below the highest power
in the data. As seen, the error signal generated by SSM-NAEC
has much higher power than those generated by the SBSS-NAEC
algorithms. Besides, SSM-NAEC generates some new compo-
nents in high frequency bins, indicating that it caused distortion.
Moreover, it is also observed that the power of the error signals
generated by AIP and AEISS is lower than those generated by
their conventional counterparts. The obtained near-end signals
are also evaluated with PESQ and STOI, which are shown in
Table III. Remarkably, the proposed AIP and AEISS algorithms
achieve notably higher PESQ and STOI values compared to
other methods, underscoring their ability to obtain high-quality
near-end signals.

E. Runtime Comparison

Finally, we compare the runtime of SBSS-NAEC algorithms.
Two 20-minute long white Gaussian noise signals are used as the
far-end and near-end signals. We compare the computation time
of the studied algorithms, which covers all the aforementioned
three steps. The odd power series expansion order N is set,
respectively, to 4, 5, and 6 while the CTF filter length L varies

Fig. 7. The average runtime to process 1-second long signal with a 16 kHz
sampling rate.

TABLE III
PESQ AND STOI OF THE OBTAINED NEAR-END SIGNALS WITH REAL

RECORDINGS

from 3 to 8. The average runtime for processing a 1-second
long signal with all studied algorithms is plotted in Fig. 7.
As seen, the runtime of all SBSS-NAEC algorithms increases
with the the value of of N and L. Under the same configura-
tion, EISS-based methods have less runtime than the IP-based
methods. The proposed AIP and AEISS algorithms are much
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more efficient than the conventional IP and EISS algorithms,
and the difference is more significant as the value of L and
N increases. This validates another property of the proposed
AIP and AEISS algorithms, i.e., besides being able to achieve
better performance, it also has lower computational complexity
as compared to their conventional counterparts.

VII. CONCLUSION

In this paper, we adopted a bilinear model to represent non-
linear echoes. To estimate the series expansion coefficients and
the CTF filter in this model, we presented a bilinear alternating
optimization framework. Under this framework, two algorithms,
i.e., the AIP and AEISS, were derived, both exploit the indepen-
dence criteria to estimate the model parameters. We showed that
the proposed AIP and AEISS algorithms are capable to achieve
nonlinear AEC in both the single-talk and double-talk scenarios.
Since the bilinear representation consists of less parameters
compared to a conventional CTF model, the developed AIP and
AEISS algorithms have demonstrated interesting properties as
compared to the conventional IP and EISS algorithms includ-
ing improved NAEC performance, better tracking ability, and
reduced complexity.

APPENDIX A
DERIVATION OF THE AUXILIARY FUNCTION

With the definition of

σ̃m
s,j =

√√√√ I∑
i=1

∣∣∣(wm
i,j

)H
ỹm
i,j

∣∣∣2, (100)

the log likelihood function can be expressed as

F (σ̃m
s,j

)
= − log p(sj). (101)

As sj follows a super Gaussian distribution, the following aux-
iliary function can be used [48]

F+
(
σ̃m
s,j

)
=

F′ (σm
s,j

)
2σm

s,j

(
σ̃m
s,j

)2
+ F (σm

s,j

)− σm
s,jF′ (σm

s,j

)
2

, (102)

where (·)′ represents the derivative and σm
i,j is defined in (29).

The above auxiliary function satisfies

F+
(
σ̃m
s,j

) ≥ F (σ̃m
s,j

)
. (103)

with equality if and only if σ̃m
s,j = σm

s,j , i.e., wm
i,j = wm

i,j−1.
Therefore, instead of minimizing F(σ̃m

i,j) at each time frame,
one can minimize F+(σ̃m

s,j). Note that

F′ (σm
s,j

)
2σm

s,j

= φ
(
σm
s,j

)
, (104)

which is defined in (28). Now substituting (100) and (103) into
(25) and considering that detWm

i,j = 1, we obtain (26), where
we neglected irrelevant constant terms.
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and S. Ciochină, “Decomposition-based wiener filter using the Kronecker
product and conjugate gradient method,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 32, pp. 124–138, 2024.

[13] E. R. Ferrara, “Fast implementation of LMS adaptive filters,” IEEE Trans.
Acoust., Speech, Signal Process., vol. 28, no. 4, pp. 474–475, Aug. 1980.

[14] G. Long, F. Ling, and J. G. Proakis, “The LMS algorithm with delayed
coefficient adaptation,” IEEE Trans. Acoust., Speech, Signal Process.,
vol. 37, no. 9, pp. 1397–1405, Sep. 1989.

[15] Y. Chen, Y. Gu, and A. O. Hero, “Sparse LMS for system identification,”
in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2009, pp. 3125–
3128.

[16] G. Su, J. Jin, Y. Gu, and J. Wang, “Performance analysis of �0-norm
constraint least mean square algorithm,” IEEE Trans. Signal Process.,
vol. 60, no. 5, pp. 2223–2235, May 2012.

[17] A. E. Albert and L. S. Gnrdner Jr., Stochatic Approxinmtion and Nodinem
Regreaion. Cambridge, MA, USA: MIT Press, 1967.

[18] J. I. Nagumo and A. Noda, “A learning method for system identification,”
IEEE Trans. Autom. Control, vol. 12, no. 3, pp. 282–287, Jun. 1967.

[19] D. L. Duttweiler, “Proportionate normalized least-mean-squares adapta-
tion in echo cancelers,” IEEE Trans. Speech Audio Process., vol. 8, no. 5,
pp. 508–518, Sep. 2000.

[20] C. Paleologu, J. Benesty, and S. Ciochină, “An improved proportionate
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